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The Klein-Gordon equation in a Kerr-Newman background 
space 

D J Rowan and G Stephenson 
Department of Mathematics, Imperial College, London, UK 

Received 3 September 1976 

Abstract. The time-dependent Klein-Gordon equation for a massive scalar meson field is 
examined in the Ken-Newman background space and solutions near the outer horizon and 
at infinity are obtained in terms of Whittaker functions. In the special case of a 
Schwarzschild black hole the solutions are shown to be closely related to asymptotic 
solutions derived elsewhere. 

1. Introduction 

In a recent paper (Rowan and Stephenson 1976, to be referred to as 11), solutions of the 
Klein-Gordon equation for a massive scalar meson field in the region exterior to a 
Schwarzschild black hole have been obtained by the Liouville-Green technique. This 
analysis required that the black hole be large (that is, that the ratio of the Schwarzschild 
radius to the Compton wavelength of the meson should be large) and that the energy 
satisfy a certain inequality relationship. In the present paper we obtain solutions of the 
radial Klein-Gordon equation for a massive meson field near the outer horizon and at 
infinity in the presence of a charged, rotating black hole of arbitrary mass as represented 
by the Kerr-Newman metric. The penalty we have to pay for allowing the mass to be 
arbitrary is that solutions can be obtained only in these regions rather than over the 
whole space as in 11. The solutions are all expressible in terms of Whittaker functions. 
Finally the special case of a Schwarzschild black hole is examined in detail and the 
results are shown to be closely related to those obtained by other methods (see, for 
example, Gibbons 1375, DeWitt 1975, Boulware 1975 and Page 1976). 

2. Basic equations 

As in I1 we start with the Klein-Gordon equation 

( 0 2 + p 2 ) @ = 0 ,  

where, as usual, p is the inverse Compton wavelength of the meson. In generally 
covariant form (2.1) is 
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where the metric ds2=giK dx' dx" is assumed to have signature -2, and g is the 
determinant of gi,. Now a charged, rotating black hole of mass M, charge Q and angular 
velocity a is described by the Kerr-Newman metric (Misner et a1 1973) 
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A sin2 e 2 P 2  

P P A ds2 = T ( d t  -a sin28 d + ) 2 - T [ ( r 2 +  a2) d 4  - a  dt] -- dr2-p2 de2, 

where 

A = r2  - 2Mr + a 2 +  Q2, p2=r2+a2cos2e .  (2.4) 

(These are the Boyer-Lindquist or generalized Schwarzschild coordinates-see Boyer 
and Lindquist 1967.) 

Substituting (2.3) into (2.2) we obtain 

[(r2+a2)2-Au2sin28] ---(A-)-- a2 a a ' L ( s i n 8 $ - )  
A at2 ar ar sin e ae 

(2.5) 
(A-a2sin2B) a2 [A-(r2+a2)] a2 

A a+at 2a - -- 
Asin'@ a+2 

which, on writing 

Q, = R(r)S(e)  e"' e-'"', 

reduces to 

(A - u 2  sin28)(-m2) 2a[A - ( r 2 +  u2)]mo 
A A sin28 

+ 1 d  1 
R d r ( ' F ) + =  $(sin eg+ -- 

[ ( r 2  + a') - Aa2 sin2f3] 
A - ( -02)-p2p2 = 0. 

This in turn can be separated into two equations 

- 1 d  -(sin e3 + ( A,, + c2 cos28 -7) m2 s = 0, 
sin 8 d e  sin 8 

where c 2 =  U ~ ( W ~ - ~ ' ) ,  2nd 

d 
A z(A g) + [ w 2 ( r 2 +  ~ ~ ) ~ - 4 M u w m r  + 2Q2aom - p 2 r 2  A 

+m2a2-((w2a2+A~,)A]R = O .  

Equation (2.8) has as its solutions the oblate spheroidal harmonic functions 
S,,(ic, cos e )  with eigenvalue A/,, where 1, m are integers such that Iml S 1. (See, for 
example, Ford 1975 and Morse and Feshbach 1953.) 

We now put 

r+ = M + [ M 2 - ( a 2 +  Q2)]1'2, r - = M - [ M 2 - ( u 2 + Q  2 )] 1/2 , (2.10) 
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into the radial equation (2.9) to obtain 

+[w2(r2+u2)2-4Mawmr+2Q2aom 
dr  dr  

-p2r2(r -r+)(r  - r-)  + m2a2-(w2a2+Al,)(r - r+)(r  - r - ) l R  = 0. (2.11) 

3. The radial equation 

Defining x and d by 
(3.1) Mx=r-r+ ,  2 M d = r + - r - = 2 [ M 2 - ( a 2 + Q  2 )] 1/2 , 

equation (2.1 1)  becomes 

, {M2[(x+d+ 1)2 - (d2 -  l)]-Q2}2 
M2X ( x  + 2 d )  

( x  ( x  + 2 d )  "") + ( w 
dx dx 

4 a w m ( x + d + l ) +  2Q2awm .- - M2p2(x  + d + 1)2 
x ( x  + 2d) 

M 2 X ( X  + 2 d )  

M 2 X ( X  + 2 d )  

+ m 2 a 2  - ( ~ Y + A , , ) )  R = o 

which, by writing R ( x )  = Z ( x ) [ x ( x  +2d)]-"', is put into the normal form 

[[w2{M4[4(x + d + 1)2 + 4 ( x  + d + l ) x ( x  + 2 d ) ]  1 -+ M 2 ( J - p 2 ) +  Z (  M2x2(x + 2d)2  

- 2M2Q2[x (x  + 2 d )  + 2(x  + d + l ) ]  + Q4} - 4 a o m M 2 ( x  + d + 1)  

+2Q2awm - p 2 M 4 [ 2 x  + ( d +  l ) ' ] x (x  + 2 d ) + m 2 a 2  

- ( ~ ~ a * + h , , ) M ~ ( x  + 2 d ) x  + M 2 d 2 ] ) Z =  0. (3.3) 

No general solution in terms of standard functions is known for this equation over the 
range O S x  < W .  However, we may obtain solutions near x = O  and at infinity by the 
following method: we first write (3.3) in partial fraction form as 

D z = 0, (3.4)  

where the constants A,  B, Cand D are found after considerable algebra to be given by: 

A = y [ M 2 d 2  + m2a2 + 2 Q 2 m m  - 4awmM2(d + 1 )  + w2Q2 
1 

4d 

-4M2w2Q2(d  + 1)+4M4w2(d + 1)2], 

B=-44 ~ ~ M ~ ( d + 1 ) ~ ( 2 d -  1 ) - 4 u 2 M 2 Q 2 ( d 2 -  1 ) + 4 m m M 2  

(3.5) 

4 d 3  

- 2 p 2 M 4 ( d  + 1)2d2 - 2d2(w2a2  + Alm)M2 - M2d2-  m2a2 

- 2Q2awm - w2Q4]],  (3 .6)  
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c = - [ 4  w 2 M 4 ( d -  1)2+4M2w2Q2(d - 1 ) + 4 m m M 2 ( d -  1 ) + M 2 d 2  
4d 

+m2a2+2Q2awm +w2Q41, 

and 

D =---5[4w2M4(2d + l ) ( d  - 1)'+4w2M2Q2(d2- 1)-4awmM' 
1 

4d 

(3.7) 

+ 2p2M4d2(d  - 1)'+ 2d2(w2a2 +Al,)M2 + M 2 d 2  + m2a2 

+2Q2awm +w2Q4].  (3.8) 

We now consider the forms of the solutions in the two limits x + 0 and x + 00. 

3.1. Case 1. x+O 

By expanding the C and D terms in (3.4) we have for small x the equation 

d 2 Z  C 

We now define 77 as 

77 = 2 f i x ,  

where 

Neglecting terms of O ( x ) ?  (3.9) finally takes the form 

B 1 A  -= _ _ ~ _ _ _ _ _ _  i: (t 2M2f i77  M 

which is to be compared with the Whittaker equation 

77 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

It follows that (3.12) has solutions in terms of the Whittaker functions with K ,  f i  defined 

K = B / 2 M 2 f i ,  f i  = $ - ( A / M 2 ) .  (3.14) 

by 

3.2. Case 2. x + 

We now expand the terms (x+2d)-' and ( x  + 2d)-2 in (3.4) for large x and write the 
equation in the form 

X 
(3.15) 
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Defining a new independent variable 6 by 

6 = 2M(p - U')  ' l 2 x  

and neglecting terms of O(l/x3), (3.15) becomes 

19 

(3.16) 

(3.17) 

Comparing this with the Whittaker equation (3.13) we see that (3.17) has Whittaker 
solutions with K ,  m defined by 

d 2 Z  --(A- B+D 1 A + C - 2 d D  
d t 2  - 4 2M3(p2-~2) ' / 2  ?- M 2 t 2  

(3.18) 

In both cases 1 and 2 therefore, the asymptotic solutions of (3.4) near the origin and at 
infinity are expressed in terms of Whittaker functions. 

B + D  r i i 2 = - -  1 A+C-2dD 
2 ~ 3 ( ~ 2  - @2)1/2 , 4 M 2  

K =  

4. Solutions in standard coordinates 

4.1. Case 1 

As x + 0 we have r + r+ and the solutions of (2.1 1) are given by 

(4.1) 

provided F # 0, where k, rii are defined by (3.14) and M,,,, are Whittaker functions 
(see Whittaker and Watson 1927). These two functions form independent solutions of 
the Whittaker equation provided 2 6  is not integral. In the case when 2m is integral the 
second solution is taken as the Whittaker function WK,-A. There is no specific physical 
reason why 2m with 6 defined by (3.14) should be integral and we shall therefore 
examine the solutions as r + r+ in terms of the MK,fA functions. For all z we have the 
series expansion 

so that as r + r+ we have the radial solutions 

(4.2) 

(4.3) 

(F # 0). 
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4.2. Case 2 

As x +CO so r+co and the solutions of (2.1 1) are given asymptotically by 

(4.4) 

where we have chosen to use the WK,, functions because of their simpler asymptotic 
behaviour as compared with the M& functions, W K , f i ( ~ )  and W-K,m (-x) forming two 
independent solutions of the Whittaker equation. In (4.4) K ,  m are defined by (3.18). 
Using the asymptotic form for large 121 given by 

we finally have the radial solutions as r + 00 in the form 

[2(p2 - w2)lI2(r  - r+)IK,  M z - m 2 ) I / z ~ r - r + ) ]  

A1/2  

__ [-2(p2 -wz)1 '2(r -r+)] -K,  

- 
R ( r ) -  

2 - w z ) 1 / 2 ( r - r + ) l  I 
provided p - w # 0. 

5. Special cases 

In the last section we have used the conventional forms of the series expansions and 
asymptotic forms for the Whittaker functions h4K,fi and W - to derive the forms of the 

values of K become very large, or if K is imaginary then ( K I  becomes very large. In these 
cases the series forms given in (4.2) and (4.5) are not very appropriate for numerical 
calculation and the asymptotic expansions appropriate to large K ,  small x ,  and large K ,  

large x given by Slater (1960) and Olver (1974) should be used. 
Failing cases exist also in the Whittaker function solutions when, for x + 0 we have 

F = 0, and for x-+ 00 when p2 = w 2 .  To deal with these two situations we have to return 
to the original equations of case 1 and case 2. 

radial solutions. However, as F +  0 in (3.14) and p 2 + w  2"," in (3.18) so the appropriate 

5.1. Case 1. F=O 

Here (3.9) becomes 

Neglecting terms of O(x) and comparing with the standard equation 

(5.1) 
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which has solutions 

(5.3) 

where I, and K, are modified Bessel functions of order a of the first and second kind 
respectively, we see that 

a’= 1 - (4A/M2) ,  P’ = -4B/M2. (5.4) 

The final radial solutions of (2.1 1 )  in this case are therefore 

R(r)  - 

5.2. Case 2. p2 = w 2  

Equation (3.15) now becomes 

X 

Neglecting terms of order l / x 3  we have 

d 2 Z  A+C-2dD B + D  
-- +-)z 
dX2--( M2x2 M2x 

and comparing with (5.2) we have 

4 4 P 2 =  --(B + D ) .  
M 2  

1 - 7 ( A  +C-2dD), 
M 

The radial solutions of (2.1 1 )  are therefore 

(5 .5)  

6. The Schwarzschild black hole 

We now examine the special case of Q = 0, a = 0 so that the metric (2.3) reduces to the 
Schwarzschild form. Accordingly we have 

A=r(r-2M),  p=r,  r+=2M, r -=O,  d = l .  (6.1) 

A = aM2 + 4M4w ’, (6.2) 
B = 4w2M4 - 2p2M4 -$M2 -$M21(1 + I ) ,  (6.3) 

Then from (3.5)-(3.8) 



22 D J Rowan and G Stephenson 

C =  $M’, 

D = $M2 + $M21(1 + 1). 

Hence for case 1, x + 0, F # 0, we have 

where 

F = [ M 2 ( p  - w 2 )  -+/(I + 1) - &]? 

Likewise for case 2, x + 00, p Zw, 

K = M (  2W - p ’)/ (p  - 0 2)1/2, m 2 = f - 4 M 2 ~ 2 + 1 ( 1 +  1). (6.8) 

Consider now, as an example, the radial solutions as r + CO as given by (4.6) and (6.8). 
These equations lead to 

which can be written as 

where A is a constant. 

Q = 0 in his work): 
Now the asymptotic form of the radial solutions given by Gibbons (1975) is (putting 

Consequently we see that (6.10) differs from (6.1 1) by the multiplying factor 

(6.1 1) 

(6.12) 

For w 2 < p 2  (6.12) reduces to a real power of [1-(2M/r)], whilst for w 2 > p 2  it retains 
the complex exponential form. In both cases as r + 00 (6.12) tends to unity, and (6.11) 
and (6.10) therefore have the same limit. 

7. Conclusion 

The work of the present paper has illustrated the difficulty of solving the radial equation 
for a massive scalar meson field in the background space of the most general black hole. 
In the absence of exact solutions we have found that unless the black hole is assumed to 
be large (as in 11, in which case the Liouville-Green asymptotic method can be used) 
solutions can be obtained only at the ends of the range 0 =z x C 00. Even the much more 
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special case of a massless meson field in a Schwarzschild space presents insurmountable 
difficulties (see, for example, Persides 1974) and no exact solution is known over the 
whole range. The theory developed here leads to a neat representation of the solutions 
at the ends of the range in terms of standard functions in the most general case, and for 
many black hole calculations such solutions are all that are required. 
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